Saturday, 26 August 2017

Snap bean (Phaseolus vulgaris L.): advances in genetic improvement

Singh BK, Lal H, Ranjan JK and Singh B. 2016. Snap bean (Phaseolus vulgaris L.): advances in genetic improvement. In: National Symposium on Vegetable Legumes for Soil and Human Health (Singh B, Singh M, Rai AB, Singh PM, Prasad RN, Mishra GP, Singh BK, Ranjan JK, Devi J, Seth T, Nagendran K., Chaukhande P, Kumar R, Gautam KK, Gujjar RS and Kumar YB Eds). ICAR-IIVR, Varanasi, 12-14 February 2016, pp 125-136.
Common bean (Phaseolus vulgaris L.), an important legume, is a rich source of protein, vitamins, minerals and fibre. The main categories of common beans, on the basis of uses, are dry beans (seeds harvested at complete maturity), snap beans (tender pods with reduced fibre harvested before the seed development phase) and shell beans (seeds harvested at physiological maturity) and. Snap bean is also known as French bean, garden bean, green bean, edible podded bean, string bean, fresh bean or vegetable bean. As the name implies, snap beans break easily when the pod is bent, giving off a distinct audible snap sound. The pods of snap beans (green, yellow and purple in colour) are harvested when they are rapidly growing, fleshy, tender (not tough and stringy), bright in colour, and the seeds are small and underdeveloped (8 to 10 days after flowering). After that period, excessive seed development reduces quality and the pod becomes fibrous, pithy and tough, and loses its bright colour. Snap bean seeds may also be used in dry static like the dry bean types. In that case pinto, kidney, pink, small red, etc. terms are used. In India, the dry bean type varieties are known as rajmash/rajmah, and snap bean named as rajmah phali in Hindi. Common beans display a wide range of growth habits from bush determinate to pole indeterminate types. Bush types are the most widely grown and are a relatively short duration crop; but on the other hand, in smallholder agriculture or in kitchen garden where land is scarce, labour-intensive high-yielding climbing beans getting popularity now-a-days. Dry bean is the largest pulse crop in the world with 23.60 mt of annual production grown on 29.29 mha area; and the top ten producing countries are Mayanmar (3.90 mt), India (3.63 mt), Brazil (2.79 mt), China (1.46 mt), USA (1.45 mt), Tanzania (1.20 mt), Mexico (1.08 mt), Kenya (0.61 mt), Ethiopia (0.46 mt) and Rawanda (0.43 mt). Moreover, snap beans’ global annual production and area is about 20.74 mt and 1.54 mha, respectively with maximum production in China (16.20 mt) followed by Indonesia (0.87 mt), India (0.62 mt), Turkey (0.61 mt), Thailand (0.31 mt), Egypt (0.25 mt), Spain (0.17 mt), Italy (0.14 mt), Morocco (0.13 mt) and Bangladesh (0.09 mt) [FAOSTAT 2012]. In India, it is grown on an area of about 1 lakh ha mainly in the states of Maharashtra, Jammu and Kashmir, Himachal Pradesh, Uttarakhand, North-East hills, Nilgiri (Tamil Nadu), hills of central India, Palni hills (Kerala) Chickmagalur (Karnataka) and Darjeeling hills (West Bengal). The tender pods of snap bean are good source of ascorbic acid (vitamin C), phylloquinone (vitamin K), β-carotene (vitamin A), riboflavin (vitamin B2), niacin (vitamin B3), Mn, K, Ca, P, Fe and omega-3 fatty acid. It is a legume crop, do fix some nitrogen but the N fixing bacteria are not active as with other legumes; therefore there is need to fertilize the field with nitrogenous fertilizer to harness the yield potential.
Origin and Domestication
The genus Phaseolus is originated in the American continent and a large number of its species is found in Mesoamerica (Freytag and Debouck 2002; Acosta-Gallegos et al. 2007). Moreover, common bean has originated in southern Mexico to Central America (Mesoamerica), while Ecuador-Peru-Bolivia region is the secondary centre of origin (Gepts 1998; Bellucci et al. 2014). The hypothesis of Mesoamerican origin of the common bean is supported by the observations that the closest relatives of wild P. vulgaris are distributed throughout Mesoamerica (Schmit et al. 1993; Delgado-Salinas et al. 2006). The genus Phaseolus comprised of about 70 species and has contributed to human welfare with five cultigens domesticated in pre-Columbian times: common bean (P. vulgaris L.), year bean (P. dumosus Macfad.), runner bean (P. coccineus L.), tepary bean (P. acutifolius A Gray) and lima bean (P. lunatus L.). Among the five domesticated species, P. vulgaris is the most important economically that accounts for more than 90% of the cultivated Phaseolus worldwide (Singh 2001; Acosta-Gallegos et al. 2007). The current distribution of the wild common bean encompasses a large geographical area: from northern Mexico to north-western Argentina. Prior to domestication, wild P. vulgaris had diverged into two major gene pools on the basis of geographic distribution: (i) the Mesoamerican i.e. Middle America and (ii) the Andean i.e. Andean South America which can be distinguished at the morphological, biochemical and molecular levels (Singh et al. 1991a), and also display partial reproductive isolation caused by F1 lethality (Gepts and Bliss 1985). With the exceptions, no successful recombination has occurred between the two major gene pools. A first exception is provided by Chilean landraces which showed signs of introgession from the Mesoamerican gene pool based on phaseolin seed protein and allozymes (Paredes and Gepts 1995). The second exception is evolution of snap bean cultivars. Although they originated in the Andean gene pool, many varieties are actually intermediate between the two gene pools as evidenced by RAPD markers (Skroch and Nienhuis 1995). This intermediate position may be attributed to recent breeding efforts aimed at introducing disease resistance from the Mesoamerican gene pool into the snap bean cultivars (Gepts 1998). While only these two major gene pools are recognized in the domesticated population, the geographical structure of the wild form of the common bean is more complex, with an additional third gene pool that is localized between Peru and Ecuador, and characterized by a specific storage seed protein, phaseolin type I (Debouck et al. 1993; Kami et al. 1995). Generally, the Mesoamerican gene pool possesses higher content of lectin, Ca, P, S and Zn than the Andean gene pool but lower phaseolin and Fe (Islam et al. 2002). Further, the two major gene pools in P. vulgaris have been divided into six races (Mesoamerican gene pool: Mesoamerica, Durango and Jalisco; and Andean gene pool: Nueva Granada, Peru and Chile) as the members of each race share distinct morphological, agronomic, physiological and biochemical traits; and differ from other races in allelic frequencies of genes controlling these traits (Singh et al. 1991a).
References
Acosta-Gallegos JA, Kelly JD and Gepts P. 2007. Pre-breeding and genetic diversity in common bean (Phaseolus vulgaris). Crop Science 47 (Supplement 3): S44–S59.
Ali MA. 1950. Genetics of resistance to the common bean mosaic virus in the bean (Phaseolus vulgaris L.). Phytopathology 40: 69–79.
Andrews SA. 2013. Snapping green beans. http://humanelivingnet.net/2013/12/17/snapping-green-beans (accessed on 22.09.2014).
Arumuganathan K and Earle ED.1991. Nuclear DNA content of some important plant species. Plant Molecular Biology Reporters 9 (3): 208–218.
Beebe S, Gonzalez AV and Rengifo J. 2000. Research on trace minerals in the common bean.  Food and Nutrition Bulletin 21: 387–391.
Bellucci E, Bitocchi E, Rau D, Rodriguez M, Biagetti E, Giardini A, Attene G, Nanni L and Papa R. 2014. Genomics of origin, domestication and evolution of Phaseolus vulgaris. In: Genomics of Plant Genetic Resources- Volume 1 (Tuberosa R, Graner A and Frison E eds.). Springer: Dordrecht, The Netherlands, pp. 483–507.
Bennett MD and Leitch IJ. 2010. Plant DNA C-values Database (Release 5.0, Dec. 2010).
Chacon SMI, Pickersgill B and Debouck DG. 2005. Domestication patterns in common bean (Phaseolus vulgaris L.) and the origin of the Mesoamerican and Andean cultivated races. Theoretical and Applied Genetics 110: 432–444.
Debouck DG, Toro O, Paredes OM, Johnson WC and Gepts P. 1993. Genetic diversity and ecological distribution of Phaseolus vulgaris in north-western South America. Economic Botany 47: 408–423.
Delgado-Salinas A, Bibler R and Lavin M. 2006. Phylogeny of the genus Phaseolus (Leguminosae): A recent diversification in an ancient landscape. Systematic Botany 31: 779–791.
Drijfhout E, Silbernagel MJD and Burke W. 1978. Differentiation of strains of bean common mosaic virus. Netherlands Journal of Plant Pathology 84: 13–26.
Drijfhout E. 1978. Inheritance of temperature-dependent string formation in common bean (Phaseolus vulgaris L.). Netherlands Journal of Agricultural Science 26: 99–105.
FAO 2010. The Second Report on the State of the World’s Plant Genetic Resources for Food and Agriculture. Rome, Italy, pp. 251–252.
FAOSTAT 2012. http://faostat.fao.org/site/567/DesktopDefault.aspx?PageID=567#ancor (accessed on 28 February 2014).
Federici CT, Ehdaie B and Wanes JAG. 1990. Domesticated and wild tepary bean: field performance with and without drought-stress. Agronomy Journal 82: 896–900.
Freytag GF and Debouck DG. 2002. Taxonomy, Distribution, and Ecology of the Genus Phaseolus (Leguminosae-Papilionoideae) in North America, Mexico and Central America. Botanical Research Institute of Texas, Ft. Worth, Texas, USA.
Genchev D and Kiryakov I. 2002. Inheritance of resistance to white mold disease (Sclerotinia sclerotiorum (Lib.) de Bary) in A 195 (Phaseolus vulgaris L.). Bulgarian Journal of Agricultural Science 8: 181–187.
Gepts P and Bliss FA. 1985. F1 hybrid weakness in the common bean: differential geographic origin suggests two gene pools in cultivated bean germplasm. Journal of Heredity 76: 447–450.
Gepts P, Kmiecik K, Pereira P and Bliss FA. 1988. Dissemination pathways of common bean (Phaseolus vulgaris, Fabaceae) deduced from phaseolin electrophoretic variability I. The Americas Economic Botany 42: 73–85.
Gepts P, Osborn TC, Rashka K and Bliss FA. 1986. Phaseolin-protein variability in wild forms and landraces of the common bean (Phaseolus vulgaris): Evidence for multiple centers of domestication. Economic Botany 40: 451–468.
Gepts P. 1998. Origin and evolution of common bean: Past events and recent trends. HortScience 33: 1124–1130.
Islam FMA, Basford KE, Jara C, Redden RL and Beebe S. 2002. Seed compositional and disease resistance differences among gene pools in cultivated common bean. Genetic Resources and Crop Evolution 49: 285–293.
Kami J, Velásquez VB, Debouck DG and Gepts P. 1995. Identification of presumed ancestral DNA sequences of phaseolin in Phaseolus vulgaris. Proceeding of the National Academy of Sciences of the USA 92: 1101–1104.
Kelly JD and Vallejo VA. 2004. A comprehensive review of the major genes conditioning resistance to anthracnose in common bean. HortScience 39: 11961207.
Kelly JD. 2004. Advances in common bean improvement: some case histories with broader applications. Acta Horticulturae 637: 99122.
Koenig R, Singh SP and Gepts P. 1990. Novel phaseolin types in wild and cultivated common bean (Phaseolus vulgaris, Fabaceae). Economic Botany 44: 50–60.
Kolkman JM and Kelly JD. 2003. QTL conferring resistance and avoidance to white mold in common bean. Crop Science 43: 539–548.
Kwapata K, Nguyen T and Sticklen M. 2012. Genetic transformation of common bean (Phaseolus vulgaris L.) with the Gus color marker, the Bar herbicide resistance, and the barley (Hordeum vulgare) HVA1 drought tolerance genes. International Journal of Agronomy Vol. 2012: 18.
Leakey CLA. 1988. Genotypic and phenotypic markers in common bean. In: Genetic Resources of Phaseolus Beans (Gepts P ed.). Kluwer Academic Publishers, Boston, USA, pp. 245327.
Méndez-Vigo B, Rodríguez-Suárez C, Pañeda A, Ferreira JJ and Giraldez R. 2005. Molecular markers and allelic relationships of anthracnose resistance gene cluster B4 in common bean. Euphytica 141: 237245. 
Miklas PN, Kelly JD, Beebe SE and Blair MW. 2006. Common bean breeding for resistance against biotic and abiotic stresses: from classical to MAS breeding. Euphytica 147: 106131.
Myers JR and Baggett JR. 1999. Improvement of snap bean. In: Common Bean Improvement in the Twenty-first Century (Singh SP ed.). Kluwer Academic Press, Dordrecht, The Netherlands, pp. 289329.
Paredes M and Gepts P. 1995. Extensive introgression of Middle American germplasm into Chilean common bean cultivars. Genetic Resources and Crop Evolution 42: 2941.
Prakken R. 1934. Inheritance of colors and pod characters in Phaseolus vulgaris L. Genetica 16: 177294.
Ram HH. 2005. Vegetable breeding: principle and practices. 2nd Revision, Kalyani Publishers, Ludhiana, India, pp 256273.
Schmit V, Jardin P, Baudoin JP and Debouck DG. 1993. Use of chloroplast DNA polymorphisms or the phylogenetic study of seven Phaseolus taxa including P. vulgaris and P. coccineus. Theoretical and Applied Genetics 87: 506–516.
Sicard D, Michalakis Y, Dron M and Neema C. 1997. Genetic diversity and pathogenic variation of Colletotrichum lindemuthianum in the three centers of diversity of its host, Phaseolus vulgaris. Phytopathology 87: 807813.
Silbernagel MJ. 1986. Snap bean breeding. In: Breeding Vegetable Crops (Bassett MJ Ed.). AVI Publication Co., Westport, Connecticut, USA, pp. 243282.
Singh BK, Deka BC and Ramakrishna Y. 2014. Genetic variability, heritability and interrelationships in pole-type French bean (Phaseolus vulgaris L.). Proceedings of the National Academy of Sciences, India Section B: Biological Sciences 84(3): 587–592.
Singh BK, Pathak KA, Ramakrishna Y, Verma VK and Deka BC. 2011. Purple-podded French bean with high antioxidant content. ICAR News: A Science and Technology Newsletter 17 (3): 9.
Singh BK, Ramakrishna Y, Verma VK and Singh SB. 2013. Vegetable cultivation in Mizoram: status, issues and sustainable approaches. Indian Journal of Hill Farming 26 (1): 17.
Singh BK, Sharma SR and Singh B. 2009. Combining ability for superoxide dismutase, peroxidase and catalase enzymes in cabbage head (Brassica oleracea var. capitata L). Scientia Horticulturae 122 (2): 195–199.
Singh BK, Sharma SR and Singh B. 2010. Heterosis for superoxide dismutase, peroxidase and catalase enzymes in the heads of cabbage (Brassica oleracea var. capitata L). Journal of Genetics 89 (2): 217–221.
Singh BK. 2014. VRFBB-91: A French bean (Phaseolus vulgaris) germplasm for earliness. Vegetable Newsletter 1 (1): 5.
Singh SP, Gepts P and Debouck DG. 1991a. Races of common bean (Phaseolus vulgaris, Fabaceae). Economic Botany 45: 379–396.
Singh SP, Gutierrez JA, Molina A, Urrea C and Gepts P. 1991b. Genetic diversity in cultivated common bean. II. Marker-based analysis of morphological and agronomic traits. Crop Science. 31: 23–29.
Singh SP, Nodari R and Gepts P. 1991c. Genetic diversity in cultivated common bean. I. Allozymes. Crop Science 31: 19–23.
Singh SP. 2001. Broadening genetic base of common bean cultivars: A review. Crop Science 41: 1659–1675.
Skroch PW and Nienhuis J. 1995. Qualitative and quantitative characterization of RAPD variation among snap bean genotypes (Phaseolus vulgaris L.). Theoretical and Applied Genetics 91: 10781085.
Sofkova S, Poryazov I and Kiryakov I. 2010. Breeding green beans (Phaseolus vulgaris L.) for complex disease resistance. Genetics and Breeding 38 (3): 7788.
Yu K, Chun S and Zhang BL. 2012. Development and application of molecular markers to breed common bean (Phaseolus vulgaris L.) for resistance to common bacterial blight (CBB)–current status and future directions. In: Applied Photosynthesis (Najafpour M ed.). Shanghai, China, pp 365-388. http://cdn.intechopen.com/pdfs-wm/30614.pdf.
Zapata M, Beaver JS and Porch TG. 2010. Dominant gene for common bean resistance to common bacterial blight caused by Xanthomonas axonopodis pv. phaseoli. Euphytica 179: 373–382.






No comments:

Post a Comment